No Image

Что понимают под фрактальной графикой

СОДЕРЖАНИЕ
2 просмотров
22 января 2020

Математика буквально пронизана гармонией, и графика фрактальная – прямое тому подтверждение. Наука присутствует при создании каждого ее элемента, поэтому она отражает всю красоту.

Создатель фрактальной геометрии, профессор Мальдерброт, писал в своих книгах, что рассматриваемая графика представляет собой не просто повторяющиеся изображения. Это – структура любого существа или объекта на планете, живого и неживого. К примеру, ДНК является основой, одной интеграцией. Но если код начинает повторяться, тогда появляется человек.

Основы фрактальной графики

Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.

Само слово "фрактал" может употребляться, если фигура обладает одним или несколькими из этих свойств:

  • Нетривиальная структура. Когда рассматривается небольшая деталь всего изображения, то фрагмент схож со всем рисунком. Увеличение масштаба не приводит к ухудшению. Изображение всегда остается одинаково сложным.
  • Каждая часть рисунка является самоподобной.
  • Имеется математическая размерность.
  • Строится при помощи повторения.

Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.

Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.

Как создать элемент фрактальной графики?

Создание фрактальной графики будет различаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, итог всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, то следует рассмотреть ее создание на соответствующем примере:

  1. Задают условие. Это фигура, на основе которой будет строиться все изображение.
  2. Задают процедуру. Она преобразует условие.
  3. Получают геометрический фрактал.

Обычно нулевое условие представляется в виде треугольника.

Чтобы построить изображение, нужно применить две процедуры. Во-первых, DrawTriangle. Она строит треугольник по точкам, заданным пользователем. Во-вторых, DrawGenerator. Она указывает количество точек. Каждая процедура может повторяться несколько раз или бесконечно долго. Для определения этого показателя применяется численный аргумент n.

Другие действия с фрактальной графикой

После того как элемент фрактальной графики был создан, с ним можно производить различные дополнительные действия:

  • Повороты и растяжения. Так увеличиваются отдельные детали рисунка, либо они принимают нужную пользователю форму.
  • Группирование объектов. Обычно эта функция применяется для того, чтобы назначить требуемый масштаб.
  • Преобразование цветов. Изображение можно окрасить в любой оттенок, задать тон.
  • Изменение формы всего объекта или отдельных деталей.

Нужно помнить, что изображения фрактальной графики в конечном итоге предсказать невозможно. Когда треугольник слишком увеличивается, то просмотр будет нереальным, пользователь увидит только черное окно. Когда желаемая текстура обнаружена, все изменения с ней нужно проводить в минимальном порядке, постоянно сохраняя допустимый вариант.

Программы для генерации

Нет такого человека, которого бы не привлекала фрактальная графика. Программы, участвующие в ее создании, представлены в большом количестве. Поэтому надо разобраться в наиболее подходящих для новичков.

Продукт Art Dabbler представляет собой лучший вариант, если пользователь раньше не имел дело с его аналогами. Здесь можно не только освоить графику, но и научиться рисовать на компьютере. К другим преимуществам следует отнести небольшое количество занимаемой памяти и интуитивно понятный интерфейс.

Другая программа – Ultra Fractal. Она уже ориентирована на работу профессионалов, новичкам сложно будет в ней разобраться. Интерфейс здесь достаточно сложный, но производители выполнили его на примере обычного Photoshop. Если пользователь имел дело с этой программой, то в кнопках разберется быстро. Особенность Ultra Fractal заключается в том, что здесь выполняется не только графика фрактальная в качестве стандартного и обычного изображения, но и анимация. Формулы для составления прилагаются, но при необходимости пользователь сможет задействовать свою.

Существующие форматы

Форматы фрактальной графики определяют форму и способ хранения файловых данных. Некоторые из них включают в себя большой объем информации. Поэтому их необходимо сжимать. Причем делать это не посредством архивирования, а непосредственно в файле. Если правильно его выбрать, то сжатие будет происходить автоматически. Есть несколько алгоритмов этой процедуры.

Если перед пользователем аппликация, большая часть которой выдержана в одном цвете, то разумно использовать форматы BMP и PCX. Здесь заменяется последовательность повторяющихся величин.

Диаграмму, которая очень редко, но все-таки используется во фрактальной графике, логично поместить в TIFF или GIF.

Часть форматов является универсальной. То есть, их можно просмотреть в большинстве редакторов. Но если пользователю важна качественная обработка изображений, тогда нужно применять оригинальную программу.

Читайте также:  Что означает написать в директ в инстаграме

Форматы фракталы не поддерживаются браузерами. Именно поэтому осуществляется их преображение, если есть необходимость загрузить на тот или иной сайт.

Сферы применения

Применение фрактальной графики можно назвать фактически повсеместным. Более того, эта область постоянно расширяется. На данный момент можно отметить следующие области:

  1. Компьютерная графика. Реалистично изображаются рельефы и природные объекты. Это применяется в создании компьютерных игр.
  2. Анализ фондовых рынков. Фракталы здесь используются для того, чтобы отметить повторения, которые впоследствии сыграют трейдерам на руку.
  3. Естественные науки. В физике с помощью фрактальной графики моделируются нелинейные процессы. В биологии она описывает строение кровеносной системы.
  4. Сжатие изображений, чтобы уменьшить объем информации.
  5. Создание децентрализованной сети. Посредством фракталов удается обеспечить прямое подключение, а не через центральное регулирование. Поэтому сеть становится более устойчивой.

На данный момент практикуется применение фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.

Примеры

Примеры фрактальной графики распространены от примитивных до очень сложных повторяющихся элементов. Уникальной особенностью данного типа является то, что рисунок можно составить исключительно из восклицательных или вопросительных знаков.

Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские побережья и так далее. Их зачастую используют при создании игр.

Самым простым примером можно назвать кривую Коха. Во-первых, она не имеет конкретной длины, и ее называют бесконечной. Во-вторых, здесь полностью отсутствует гладкость. Поэтому невозможно построить касательную.

Плюсы и минусы

Свое распространение совсем недавно заполучила фрактальная графика. Достоинства и недостатки ее слишком размыты, поскольку отсутствует нормальная теоретическая база. Терминология и принципы ее использования до конца не изучены, несмотря на то, что они действенные и рабочие.

Достоинства фрактальной графики заключаются в нескольких факторах:

  1. Небольшой размер при масштабном рисунке.
  2. Нет конца масштабированию, сложность картинки можно увеличивать бесконечно.
  3. Нет другого такого же инструмента, который позволит создавать сложные фигуры.
  4. Реалистичность.
  5. Простота в создании работ.

Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера здесь не обойтись. Причем, чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.

Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.

Сходства и различия между фракталом и вектором

Векторная и фрактальная графика очень различаются между собой:

  1. По кодированию изображений. Вектор задействует контуры разных геометрических фигур, фрактал – математическую формулу, в основе которой лежит треугольник.
  2. По применению. Вектор используют везде, где нужно получить четкий контур. Фрактальная графика более специализирована, она нашла свое применение в математике и искусстве.
  3. По аналогам. Векторными аналогами являются слайды или функции на графиках. У фракталов это – снежинки или кристаллы.

Несмотря на многообразие отличительных черт, эти два вида графики объединяет качество изображения. Оно остается неизменным, независимо от уровня масштабирования.

Трехмерная, векторная, растровая, фрактальная графика схожи в одном – все они широко используются в решении различных компьютерных задач. Чтобы получить действительно качественное изображение, нужно задействовать каждую из них.

Уникальные особенности фракталов

Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.

В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.

Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.

Заключение

Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека – горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.

Развитие фрактальных технологий на сегодняшний день – одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Читайте также:  Схема защиты от переполюсовки для зарядного устройства

Примеры

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
  • треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
  • губка Менгера — аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
  • кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.

Рекурсивная процедура получения фрактальных кривых

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение Ψ является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а n — число звеньев генератора.

Для треугольника Серпинского n = 3 и отображения ψ1 , ψ2 , ψ3 — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении Ψ .

В случае, когда отображения ψi — преобразования подобия с коэффициентами ri > 0 , размерность s фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем s = ln3 / ln2 .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть F(z) — многочлен, z — комплексное число и рассмотрим следующую последовательность:

.

Нас интересует поведение этой последовательности при . Эта последовательность может:

  • Стремиться к бесконечности;
  • Стремиться к конечному пределу;
  • Демонстрировать в пределе циклическое поведение, то есть поведение вида
  • Демонстрировать более сложное поведение.

Множества значений z , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена F(z) = z 2 + c , то есть тех значений z , для которых поведение последовательности zn может резко меняться при сколь угодно малых изменениях z .

Другой вариант получения фрактальных множеств — введение параметра в многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность zn демонстрирует определённое поведение при фиксированном z . Так, множество Мандельброта — это множество всех , при которых zn для F(z) = z 2 + c и z = 0 не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления zn к бесконечности (определяемой, скажем, как наименьший номер n , при котором | zn | превысит фиксированную большую величину A ).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельборта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
Читайте также:  Установка raspbian на raspberry pi 3

Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, состоящие в получении изображения случайного фрактала.

В век информационных технологий все реже можно встретить художников, рисующих на лисе акварелью, маслом, карандашом. Увидеть мангак, закупающих килограммы скринтонов. Ведь большая часть художников уже перешла на планшеты и удобный софт. Наверное, правильно. Можно сколько угодно говорить:”Живые рисунки лучше, они пахнут краской.”, но нельзя отрицать новые возможности, которые дает прогресс. В статье Основы компьютерной графики мы говорили, что двумерную графику разделяют на векторную и растровую, хотя отдельно называют еще и фрактальный тип обособления изображений. Про фрактальную графику, графику слияния математики и искусства мы и поговорим в этой статье.

Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся и перспективных видов компьютерной графики. Логично, что Фрактальная графика состоит из фракталов. Но что же это такое? Фрактал — это структура самоподобных фрагментов. Это значит, что взяв небольшую часть фрактала можно получить информацию обо всем фрактале. Как повторяющиеся фоны на сайтах или узоры на советских коврах. Чтобы представить себе фрактал и запомнить как он выглядит на всю жизнь, достаточно посмотреть на Капусту Романеско. Это реально существующая итальянская капуста.

Капусты Романеско похожи на пирамиды, у них красивый светло-зеленый цвет и они не горчат в отличие от брокколи или цветной капусты.

Как мы видим на фотографии мелкие элементы фрактального объекта повторяют свойства всего объекта, а процесс наследования можно продолжать до бесконечности.

Изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать множество приёмов: горизонтали и вертикали, диагональные направления, симметрию и асимметрию. С чем можно сравнить фрактальное изображение? Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную композицию.

На самом деле фрактальные свойства имеет очень большое количество природных объектов — просто мало кто об этом задумывается. Вы можете любоваться облаками на небе, набегающими волнами прибоя, ходить по лесу — и даже не подозревать, что в основе этой красоты лежит математика. Несмотря на всю сложность природных объектов, многие из них в принципе описываются довольно простыми математическими формулами. Хотя в чистом виде фракталы в природе не существуют.

Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Фигура является фракталом, если обладает следующими свойствами:

1. имеет нетривиальную структуру во всех масштабах (для фрактала увеличение масштаба не ведет к упрощению структуры, поэтому на всех шкалах мы увидим одинаково сложную картину).

2. является самоподобной или приближенно самоподобной.

3. имеет дробную метрическую размерность или метрическую размерность, превосходящую топологическую.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений:

Apophysis 3D — используется fractal flame — алгоритм. В ней можно создавать как 2Д — изображения, так и псевдо 3Д — графику. На данный момент не поддерживается разработчиками.

Apophysis 7X — Логическое продолжение Apophysis 3D, но с поддержкой от разработчиков. Работать в программе нужно, манипулируя треугольниками. Есть генератор мутаций — случайное редактирование треугольников. Серьёзные возможности по трансформациям и практически всем параметрам фрактала.

Chaotica—Инструмент на основе fractal flame — алгоритма, но ориентированный более на рендеринг изображения.

Ultra Fractal — Мощный инструмент для фрактальных художников. Поддерживает слои, альфа-каналы, градиенты, создание собственных формул и многое другое.

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector