No Image

Что такое модуль в программировании

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Модуль — (от лат. modulus «маленькая мера»): В Викисловаре есть статья «модуль» Мо … Википедия

Модуль (значения) — Модуль (от лат. modulus «маленькая мера») составная часть, отделимая или хотя бы мысленно выделяемая из общего. Модульной обычно называют вещь, состоящую из чётко выраженных частей, которые нередко можно убирать или добавлять, не разрушая вещь… … Википедия

Контрактное программирование — (design by contract (DbC), programming by contract, contract based programming) это метод проектирования программного обеспечения. Он предполагает, что проектировщик должен определить формальные, точные и верифицируемые спецификации… … Википедия

Связанность (программирование) — Связанность (англ. coupling) или зависимость (англ. dependency) характеристика взаимосвязи модуля с другими модулями. Это степень, в которой каждый программный модуль полагается на другие модули. Связанность обычно… … Википедия

Функциональное программирование на Питоне — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Функциональное программирование на Python — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Объектно-ориентированное программирование на Python — Объектно ориентированное программирование на Python программирование на Python с использованием парадигмы ООП: с самого начала Python проектировался как объектно ориентированный язык программирования[1]. Содержание 1 Введение 1.1 … Википедия

Аспектно-ориентированное программирование — Парадигмы программирования Агентно ориентированная Компонентно ориентированная Конкатенативная Декларативная (контрастирует с Императивной) Ограничениями Функциональная Потоком данных Таблично ориентированная (электронные таблицы) Реактивная … Википедия

Эволюционное программирование — Содержание 1 Эволюционное программирование 2 Современное эволюционное программирование … Википедия

Компонентно-ориентированное программирование — Парадигмы программирования Агентно ориентированная Компонентно ориентированная Конкатенативная Декларативная (контрастирует с Императивной) Ограничениями Функциональная Потоком данных Таблично ориентированная (электронные таблицы) Реактивная … Википедия

В любой профессии, не только в программировании, вы переживаете разные эмоциональные состояния по ходу выполнения проекта:

  • Сначала есть энтузиазм от перспектив и возможностей.
  • Затем приходит азарт. Первые ошибки и трудности вас только раззадоривают, заставляя мозг и фантазию работать на полную катушку.
  • Следом проседает концентрация. В какой-то момент вы перестаёте обращать внимание на предупреждения и мелкие ошибки, откладывая решение этих проблем на потом.
  • В итоге вы теряете мотивацию. Вы исправляете одну ошибку – появляется три. Вы пытаетесь добавить новую функцию, но выкидываете идею в мусорное ведро из-за нежелания тратить на это много времени.

Некоторые думают, что это нормально: стоит смириться и каждый раз проживать этот цикл. На деле же всё немного проще, и решение лежит не в области психологии, а в подходе к созданию кода.

Классическая проблема программирования

В западной литературе существует термин «big ball of mud» для описания архитектуры программы. Давайте переведём его дословно. Графически «большой шар грязи» можно представить в виде точек на окружности, символизирующих функциональные элементы, и прямых – связей между ними:

Похоже на ваши глаза перед сдачей проекта, не так ли?

Это иллюстрация той сложности, с которой вам надо работать, какое количество связей учитывать, если возникает ошибка.

Программирование не уникальная дисциплина: здесь можно и нужно применять опыт из других областей. Возьмём, к примеру, компьютер. Их производители не задумываются над многообразием задач, которые решает пользователь, и уж тем более не выделяют под каждую маленький процессор и память. Компьютер – это просто набор независимых сложных объектов, объединённых в одном корпусе при помощи разъёмов и проводов. Объекты не уникальны, не оптимизированы конкретно под вас, и тем не менее блестяще справляются со своей задачей.

В программировании есть точно такие же решения. Например, библиотеки. Они помогают не тратить драгоценное время на изобретение велосипеда. Однако для частных задач библиотеки не эффективны – создание отнимет уйму времени, а при единичной повторяемости эффективность стремится к нулю.

В этом случае полезнее обратиться к модулям. Модуль – логически завершённый фрагмент кода, имеющий конкретное функциональное назначение. Для взаимодействия модулей используются способы, не позволяющие изменять параметры и функциональность. Плюсы модульного программирования очевидны:

  • Ускорение разработки.
  • Повышение надёжности.
  • Упрощение тестирования.
  • Взаимозаменяемость.

Модульное программирование крайне эффективно при групповых разработках, где каждый сотрудник может сконцентрироваться только на своём фронте работ и не оглядываться на решения коллег. Однако и в индивидуальном подходе вы получаете, как минимум, вышеописанные преимущества.

Но не всё так просто.

Проблемы модульного программирования

Сама по себе идея использования модулей не сильно упрощает код, важно минимизировать количество прямых связей между ними. Здесь мы подходим к понятию «инверсия управления» (IoC). Упрощённо – это принцип программирования, при котором отдельные компоненты кода максимально изолированы друг от друга. То есть детали одного модуля не должны влиять на реализацию другого. Достигается это при помощи интерфейсов или других видов представления, не обеспечивающих прямого доступа к модульному коду.

Читайте также:  Странные звуки в жестком диске

В повседневной жизни таких примеров множество. Чтобы купить билет на самолёт или узнать время вылета, вам не надо звонить пилоту. Чтобы выпить молока, не надо ехать в деревню или на завод и стоять над душой у коровы. Для этого всегда есть посредники.

В модульном программировании существует три основные реализации:

  • Внедрение зависимостей. Способ, при котором каждый элемент имеет свой интерфейс, взаимодействие модулей происходит через интерфейсы.
  • Фабричный метод. Основывается на существовании некого объекта, предназначенного для создания других объектов. Иначе говоря, введение в программу прототипа, объединяющего общие черты для большинства объектов. Прямого взаимодействия между модулями нет, все параметры наследуются от «завода».
  • Сервисный метод. Создаётся один общий интерфейс, являющийся буфером для взаимодействия объектов. Похожую функцию в реальной жизни выполняют колл-центры, магазины, площадки для объявлений и т.д.

Несмотря на то, что первая реализация IoC используется чаще всего, для первых шагов в модульном программировании лучше использовать другие два. Причина – простое создание интерфейсов лишь ограничивает доступ к модулям, а для снижения сложности кода необходимо также уменьшить количество связей. Интерфейсы, хаотично ссылающиеся на другие интерфейсы, код только усложняют.

Для решения этой проблемы необходимо разработать архитектуру кода. Как правило, она схожа с файловой структурой любого приложения:

Таким образом, поддержка принципов модульного программирования, инверсии управления и четкой архитектуры приложения поможет убить сразу трёх зайцев:

  1. Обеспечить чёткое функциональное разделение кода. При возникновении ошибок можно быстро определить источник, а исправления не приведут к появлению новых сбоев.
  2. Минимизировать количество связей. Это позволит упростить разработку, отдав на откуп нескольким разработчикам разные модули. Или вы сможете самостоятельно разрабатывать каждый блок без оглядки на другие, что тоже экономит время и силы.
  3. Создать иерархию с чёткой вертикалью наследования. Это повышает надёжность кода, так как тестирование провести проще, а результаты информативнее.

Соблюдение принципа модульности в больших проектах позволит сэкономить время и не расплескать стартовый задор. Более того, у вас получится наконец сосредоточиться на самом интересном – реализации оригинальных задумок в коде. А ведь это именно то, что каждый из нас ищет в программировании.

В любой профессии, не только в программировании, вы переживаете разные эмоциональные состояния по ходу выполнения проекта:

  • Сначала есть энтузиазм от перспектив и возможностей.
  • Затем приходит азарт. Первые ошибки и трудности вас только раззадоривают, заставляя мозг и фантазию работать на полную катушку.
  • Следом проседает концентрация. В какой-то момент вы перестаёте обращать внимание на предупреждения и мелкие ошибки, откладывая решение этих проблем на потом.
  • В итоге вы теряете мотивацию. Вы исправляете одну ошибку – появляется три. Вы пытаетесь добавить новую функцию, но выкидываете идею в мусорное ведро из-за нежелания тратить на это много времени.

Некоторые думают, что это нормально: стоит смириться и каждый раз проживать этот цикл. На деле же всё немного проще, и решение лежит не в области психологии, а в подходе к созданию кода.

Классическая проблема программирования

В западной литературе существует термин «big ball of mud» для описания архитектуры программы. Давайте переведём его дословно. Графически «большой шар грязи» можно представить в виде точек на окружности, символизирующих функциональные элементы, и прямых – связей между ними:

Похоже на ваши глаза перед сдачей проекта, не так ли?

Это иллюстрация той сложности, с которой вам надо работать, какое количество связей учитывать, если возникает ошибка.

Программирование не уникальная дисциплина: здесь можно и нужно применять опыт из других областей. Возьмём, к примеру, компьютер. Их производители не задумываются над многообразием задач, которые решает пользователь, и уж тем более не выделяют под каждую маленький процессор и память. Компьютер – это просто набор независимых сложных объектов, объединённых в одном корпусе при помощи разъёмов и проводов. Объекты не уникальны, не оптимизированы конкретно под вас, и тем не менее блестяще справляются со своей задачей.

В программировании есть точно такие же решения. Например, библиотеки. Они помогают не тратить драгоценное время на изобретение велосипеда. Однако для частных задач библиотеки не эффективны – создание отнимет уйму времени, а при единичной повторяемости эффективность стремится к нулю.

В этом случае полезнее обратиться к модулям. Модуль – логически завершённый фрагмент кода, имеющий конкретное функциональное назначение. Для взаимодействия модулей используются способы, не позволяющие изменять параметры и функциональность. Плюсы модульного программирования очевидны:

  • Ускорение разработки.
  • Повышение надёжности.
  • Упрощение тестирования.
  • Взаимозаменяемость.
Читайте также:  Что за программа intel management engine

Модульное программирование крайне эффективно при групповых разработках, где каждый сотрудник может сконцентрироваться только на своём фронте работ и не оглядываться на решения коллег. Однако и в индивидуальном подходе вы получаете, как минимум, вышеописанные преимущества.

Но не всё так просто.

Проблемы модульного программирования

Сама по себе идея использования модулей не сильно упрощает код, важно минимизировать количество прямых связей между ними. Здесь мы подходим к понятию «инверсия управления» (IoC). Упрощённо – это принцип программирования, при котором отдельные компоненты кода максимально изолированы друг от друга. То есть детали одного модуля не должны влиять на реализацию другого. Достигается это при помощи интерфейсов или других видов представления, не обеспечивающих прямого доступа к модульному коду.

В повседневной жизни таких примеров множество. Чтобы купить билет на самолёт или узнать время вылета, вам не надо звонить пилоту. Чтобы выпить молока, не надо ехать в деревню или на завод и стоять над душой у коровы. Для этого всегда есть посредники.

В модульном программировании существует три основные реализации:

  • Внедрение зависимостей. Способ, при котором каждый элемент имеет свой интерфейс, взаимодействие модулей происходит через интерфейсы.
  • Фабричный метод. Основывается на существовании некого объекта, предназначенного для создания других объектов. Иначе говоря, введение в программу прототипа, объединяющего общие черты для большинства объектов. Прямого взаимодействия между модулями нет, все параметры наследуются от «завода».
  • Сервисный метод. Создаётся один общий интерфейс, являющийся буфером для взаимодействия объектов. Похожую функцию в реальной жизни выполняют колл-центры, магазины, площадки для объявлений и т.д.

Несмотря на то, что первая реализация IoC используется чаще всего, для первых шагов в модульном программировании лучше использовать другие два. Причина – простое создание интерфейсов лишь ограничивает доступ к модулям, а для снижения сложности кода необходимо также уменьшить количество связей. Интерфейсы, хаотично ссылающиеся на другие интерфейсы, код только усложняют.

Для решения этой проблемы необходимо разработать архитектуру кода. Как правило, она схожа с файловой структурой любого приложения:

Таким образом, поддержка принципов модульного программирования, инверсии управления и четкой архитектуры приложения поможет убить сразу трёх зайцев:

  1. Обеспечить чёткое функциональное разделение кода. При возникновении ошибок можно быстро определить источник, а исправления не приведут к появлению новых сбоев.
  2. Минимизировать количество связей. Это позволит упростить разработку, отдав на откуп нескольким разработчикам разные модули. Или вы сможете самостоятельно разрабатывать каждый блок без оглядки на другие, что тоже экономит время и силы.
  3. Создать иерархию с чёткой вертикалью наследования. Это повышает надёжность кода, так как тестирование провести проще, а результаты информативнее.

Соблюдение принципа модульности в больших проектах позволит сэкономить время и не расплескать стартовый задор. Более того, у вас получится наконец сосредоточиться на самом интересном – реализации оригинальных задумок в коде. А ведь это именно то, что каждый из нас ищет в программировании.

Модуль – это последовательность логически связанных фрагментов, оформленных как отдельная часть программы.

К модулю предъявляются следующие требования:

1) модуль должен реализовывать единственную функцию, т.е. при построении модуля используется концепция: «один модуль – одна функция». Таким образом, модуль – это элемент программы, выполняющий самостоятельную задачу. На его входе он может получать определенный набор исходных данных, обрабатывать их в соответствии с заданным алгоритмом и возвращать результат обработки, т.е. реализуется стандартный принцип IPO (Input – Process – Output) – вход-процесс-выход;

2) на модуль нужно ссылаться с помощью его имени. Он должен иметь один вход и один выход, что гарантирует замкнутость модуля и упрощает сопровождение программ;

3) модуль должен иметь функциональную завершенность, т.е. выполнять перечень регламентированных операций для реализации каждой отдельной функции в полном составе, достаточных для завершения начатой обработки;

4) модуль должен возвращать управление в точку его вызова, в свою очередь, он должен иметь возможность сам вызывать другие модули;

5) модуль не должен сохранять историю своих вызовов и использовать ее при своем функционировании;

6) модуль должен иметь логическую независимость, т.е. результат работы программного модуля зависит только от исходных данных, но не зависит от работы других модулей;

7) модуль должен иметь слабые информационные связи с другими программными модулями – обмен информацией между модулями должен быть по возможности минимизирован;

8) модуль должен быть сравнительно невелик, т.е. быть обозримым по размеру и сложности. Опытные программисты рекомендуют его размер не более двух страниц распечатки на принтере.

Для достижения независимости модулей часто используется принцип информационной локализованности, который состоит в том, что вся информация о структуре данных, о прототипах функций, констант и т.д. сосредотачивается («упрятывается») в отдельном модуле. Доступ к этой информации осуществляется только через этот модуль (в алгоритмическом языке С/С++ такие модули имеют расширение *.h).

Читайте также:  Что делать если заполнен локальный диск с

Программирование с использованием модулей называется модульным программированием. Оно возникло еще в начале 60-х годов XX в. Модульное программирование основано на идее использования уровней абстракции, когда вся проблема или комплекс задач разбивается на задачи, подзадачи, абстрагируется и представляется в виде иерархического дерева связанных между собой модулей, в совокупности представляющих создаваемое программное обеспечение (ПО).

Достоинствами модульного программирования является следующее:

· большую программу могут писать одновременно несколько программистов, что позволяет раньше закончить задачу;

· можно создавать библиотеки наиболее употребительных модулей;

· упрощается процедура загрузки в оперативную память большой программы, требующей сегментации;

· появляется много естественных контрольных точек для отладки проекта;

· проще проектировать и в дальнейшем модифицировать программы.

Недостатки модульного программирования заключаеются в следующем:

· возрастает размер требуемой оперативной памяти;

· увеличивается время компиляции и загрузки;

· увеличивается время выполнения программы;

· довольно сложными становятся межмодульные интерфейсы.

Модульное программирование реализуется через модули – функции. Функция – это область памяти, выделяемая для сохранения программного кода, предназначенного для выполнения конкретной задачи. Другими словами, функция – минимальный исполняемый модуль программы на языке С/С++. По умолчанию функция имеет тип external, и доступ к ней возможен из любого файла программы. Но она может быть ограничена спецификатором класса памяти static.

Функция характеризуется типом, областью действия связанного с функцией имени, видимостью имени функции, типом связывания.

Все функции имеют рекомендуемый стандартами языка единый формат определения. Он имеет заголовок функции, в котором задаются: тип, имя функции и спецификация формальных параметров:

Тип имя_функции (спецификация_параметров) тело_функции

Тип – это тип возвращаемого функцией значения, в том числе void (кроме типов массива или функции). Умолчанием является тип int. Если тип возврата функции не void, то тело функции должно содержать как минимум один оператор return.

Имя_функции – идентификатор, с помощью которого можно обратиться к функции. Он выбирается программистом произвольно и не должен совпадать со служебными словами и с именами других объектов программы. Однако любая программа на языке С/С++ должна иметь хотя бы одну функцию с именем main – главную функцию, содержащую точку входа в программу.

Спецификация_параметров – список формальных параметров, т.е. переменных, принимающих значения, передаваемые функции при ее вызове. Список формальных параметров перечисляется через запятую. Каждый формальный параметр должен иметь следующий формат:

Тип может быть встроенным (int, long, float, double и т.д.), структурой (struct), объединением (union), перечислением (enum), указателями на них или на функции или классы (class). Имя_формального_параметра представляет собой имя используемой в теле функции переменной. Идентификаторы формальных параметров не могут совпадать с именами локальных переменных, объявленных внутри тела функции.

Объявление формального параметра может содержать инициализатор, то есть выражение, которое должно обеспечить параметру присвоение начального значения. Инициализатор параметра не является константным выражением. Начальная инициализация параметров происходит не на стадии компиляции (как, например, выделение памяти под массивы), а непосредственно в ходе выполнения программы.

В языке С/C++ допустимы функции, количество параметров у которых при компиляции функции не фиксировано, следовательно, остаются неизвестными и их типы. Количество и типы параметров таких функций становятся известными только при их вызове, когда явно задан список фактических параметров. При определении и описании таких функций со списками параметров неопределенной длины спецификацию формальных параметров следует закончить запятой и многоточием.

Каждая функция с переменным количеством параметров должна иметь хотя бы один обязательный параметр. После списка обязательных параметров ставится запятая, а затем многоточие, извещающее компилятор, что дальнейший контроль соответствия количества и типов параметров при обработке вызова функции проводить не нужно.

Спецификация_параметровможет отсутствовать, то есть скобки могут быть пустыми, но в этом случае рекомендуется указывать тип void.

Тело_функции – часть определения функции, ограниченная фигурными скобками и непосредственно размещенная вслед за заголовком функции. Тело_функцииможет быть либо составным оператором, либо блоком. Например:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9530 — | 7348 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector