No Image

Цилиндрическая система координат тройной интеграл

0 просмотров
22 января 2020

Для тройных интегралов, как и для двойных, имеют место формулы замены переменных при переходе от прямоугольных координат к новым системам координат, наиболее употребительными из которых являются цилиндрические и сферические координаты.

Переход от прямоугольных координат к цилиндрическим координатам (рис. 6.8), связанным с соотношениями

,

осуществляется по формуле

.

Выражение называют элементом объема в цилиндрических координатах.

Название «цилиндрические координаты» связано с тем, что координатная поверхность (т.е. поверхность, все точки которой имеют одну и ту же координату r) является цилиндром, прямолинейные образующие которого параллельны оси .

Рис. 6.8. Цилиндрические (слева) и сферические (справа) координаты

Переход от прямоугольных координат к сферическим координатам (рис. 6.8), связанным с соотношениями

,

осуществляется по формуле

.

Выражение называют элементом объема в сферических координатах.

Название «сферические координаты» связано с тем, что координатная поверхность (т.е. поверхность, все точки которой имеют одну и ту же координату ) является сферой с центром в начале координат.

Пример. Вычислить тройной интеграл

,

где – область, ограниченная поверхностями и (рис. 6.9).

Рис. 6.9. Пример вычисления тройного интеграла в цилиндрических координатах

В данном примере удобно перейти от прямоугольных к цилиндрическим координатам.

Так как область проектируется на плоскость в круг , то угол изменяется в пределах от 0 до , радиус-вектор r изменяется в пределах от 0 до 1. Координата z изменяется от значений для точек, лежащих на параболоиде , до значений для точек, лежащих на плоскости , т.е. .

Применяя формулу для вычисления тройного интеграла в цилиндрических координатах, получаем

.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8955 — | 7623 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Примеры применения цилиндрических и сферических координат
  1. Услуги проектирования
  2. Тройной интеграл
  3. Примеры применения цилиндрических и сферических координат

Как и в случае перехода к полярным координатам в двойном интеграле, дать однозначный рецепт того, когда следует применять цилиндрические или сферические координаты, нельзя, это дело опыта. Можно попробовать применить цилиндрические координаты, если подынтегральная функция и/или уравнения поверхностей, ограничивающих объём $mathbf < extit < V >> $, зависят от комбинации $mathbf < extit < x >> ^ < 2 >+mathbf < extit < y >> ^ < 2 >=mathbf < extit < r >> ^ < 2 >$; сферические — если эти уравнения зависят от $mathbf < extit < x >> ^ < 2 >+mathbf < extit < y >> ^ < 2 >+mathbf < extit < z >> ^ < 2 >=mathbf < extit < r >> ^ < 2 >$. Рассмотрим ряд примеров.

Найти объём $mathbf < extit < V >> $ общей части двух шаров, ограниченных сферами

Решение:

Пересечение сфер находится на уровне $2Rz=R^2Rightarrow z=R/2$ и представляет собой круг радиуса $Rfrac < sqrt 3 > < 2 >$. Объём $mathbf < extit < V >> $ограничен сверху поверхностью $z=sqrt < R^2-x^2-y^2 >$, снизу — поверхностью $z=R-sqrt < R^2-x^2-y^2 >$. Вычисления в декартовых координатах дают $V=iiintlimits_V < dv >=iiintlimits_V < dxdydz >=intlimits_ < -Rfrac < sqrt 3 > < 2 >> ^ < Rfrac < sqrt 3 > < 2 >> < dxintlimits_ < -sqrt < frac < 3 > < 4 >R^2-x^2 > > ^ < sqrt < frac < 3 > < 4 >R^2-x^2 > > < dyintlimits_ < R-sqrt < R^2-x^2-y^2 >> ^ < sqrt < R^2-x^2-y^2 >> < dz >> > $ — достаточно громоздкие выкладки.

В цилиндрических координатах объём $mathbf < extit < V >> $ ограничен сверху поверхностью $z=sqrt < R^2-r^2 >$, снизу — поверхностью $z=R-sqrt < R^2-r^2 >$, поэтому

В сферических координатах уравнение нижней сферы принимает вид $r=R$, верхней — $r^2=2Rrcos heta Rightarrow r=2Rcos heta $, их пересечение соответствует значению $cos heta =1/2Rightarrow heta =pi /3$. В интервале $0leqslant heta leqslant pi /3 quad mathbf < extit < r >> $ меняется от $0$ до $mathbf < extit < R >> $, в интервале $pi /3leqslant heta leqslant pi /2 quad mathbf < extit < r >> $ меняется от $0$ до $2Rcos heta $, поэтому

В этом примере трудоёмкость вычислений в цилиндрических и сферических координатах примерно одинакова.

Решение:

Параболоид и конус пересекаются в плоскости $x=2-x^2Rightarrow x=1$ по кругу радиуса 1. Осью симметрии объёма $mathbf < extit < V >> $ служит ось $mathbf < extit < Ох >> $, поэтому цилиндрические координаты вводим формулами $x=x,quad y=rcos varphi ,quad z=rsin varphi ; quad I=iiintlimits_V < (x+y+z)dxdydz >=iiintlimits_V < (x+rcos varphi +rsin varphi )rdxdrdvarphi >=intlimits_0^ < 2pi > < dvarphi intlimits_0^1 < rdrintlimits_r^ < 2-r^2 > < (x+rcos varphi +rsin varphi )dx >> > =$ $ =intlimits_0^ < 2pi > < dvarphi intlimits_0^1 < left. < frac < x^2 > < 2 >>
ight|_r^ < 2-r^2 >rdr > > +intlimits_0^ < 2pi > < (cos varphi +sin varphi )dvarphi intlimits_0^1 < left. x
ight|_r^ < 2-r^2 >r^2dr > > =pi intlimits_0^1 < left( < 4-5r^2+r^4 >
ight)dr > =frac < 38pi > < 15 >. $ Применение сферических координат в этом примере нецелесообразно < громоздкое уравнение для параболоида >.

Читайте также:  Телефон поймал вирус через смс что делать

Решение:

Здесь область интегрирования — шар радиуса 1/2, сдвинутый по оси $mathbf < extit < Оz >> $ на 1/2 единицы, подынтегральная функция зависит от выражения $mathbf < extit < x >> ^ < 2 >+mathbf < extit < y >> ^ < 2 >+mathbf < extit < z >> ^ < 2 >$, поэтому применим сферические координаты. Уравнение сферы $x^2+y^2+z^2=zRightarrow r^2=rcos heta Rightarrow r=cos heta left( < Rightarrow 0leqslant heta leqslant pi /2 >
ight)$ , поэтому $I=iiintlimits_V < sqrt < x^2+y^2+z^2 >dxdydz > =iiintlimits_V < rcdot r^2sin heta drdvarphi d heta >=intlimits_0^ < 2pi > < dvarphi intlimits_0^ < pi /2 > < sin heta d heta >intlimits_0^ < cos heta > < r^3dr >> =frac < 2pi > < 4 >intlimits_0^ < pi /2 >< left. < r^4 >
ight|_0^ < cos heta >sin heta d heta > = \ =frac < 2pi > < 4 >intlimits_0^ < pi /2 > < cos ^4 heta sin heta d heta >=-frac < 2pi > < 4cdot 5 >left. < cos ^5 heta >
ight|_0^ < pi /2 >=frac < pi > < 10 >$.

Вычислить объём тела, ограниченного поверхностью $left( < x^2+y^2+z^2 >
ight)^ < ,2 >=a^3z,;a=const>0$

Решение:

Здесь тоже для того, чтобы понять, как устроено тело, и найти его объём, надо перейти к сферическим координатам < на это указывает комбинация $mathbf < extit < x >> ^ < 2 >+mathbf < extit < y >> ^ < 2 >+mathbf < extit < z >> ^ < 2 >=mathbf < extit < r >> ^ < 2 >)$. Уравнение поверхности $left( < x^2+y^2+z^2 >
ight)^ < ,2 >=a^3zRightarrow r^4=a^3rcos vartheta Rightarrow r=asqrt[3] < cos vartheta >;left( < Rightarrow 0leqslant heta leqslant pi /2 >
ight)$. По этому уравнению поверхность построить уже можно; отсутствие координаты $varphi $ в уравнении показывает, что это — тело вращения вокруг оси $mathbf < extit < Oz >> $. Находим объём: $ V=iiintlimits_V < r^2sin heta drdvarphi d heta >=intlimits_0^ < 2pi > < dvarphi intlimits_0^ < pi /2 > < sin >> heta d heta intlimits_0^ < asqrt[3] < cos heta >> < r^2dr >=frac < 2pi > < 3 >intlimits_0^ < pi /2 >< left. < r^3 >
ight|_0^ < asqrt[3] < cos heta >> sin heta d heta = > $ $ =frac < 2pi a^3 > < 3 >intlimits_0^ < pi /2 > < cos heta sin heta d heta = >frac < pi a^3 > < 3 >. $

Вычислить интеграл $iiintlimits_U < left( < < x^4 >+ 2 < x^2 > < y^2 >+ < y^4 >>
ight)dxdydz > ,$ где область (U) ограничена поверхностью ( < x^2 >+ < y^2 >le 1) и плоскостями (z = 0,) (z = 1).

Решение:

Данный интеграл удобно вычислить в цилиндрических координатах. Проекция области интегрирования на плоскость (Oxy) представляет собой круг ( < x^2 >+ < y^2 >le 1) или (0 le
ho le 1).

Заметим, что подынтегральное выражение записывается в виде $ < left( < < x^4 >+ 2 < x^2 > < y^2 >+ < y^4 >>
ight) > = < < left( < < x^2 >+ < y^2 >>
ight)^2 > > = < < left( < <
ho ^2 >>
ight)^2 > = <
ho ^4 >> $

Тогда интеграл будет равен $I = intlimits_0^ < 2pi > < dvarphi >intlimits_0^1 < <
ho ^4 >
ho d
ho > intlimits_0^1 < dz >.$

Здесь во втором интеграле добавлен множитель (
ho) якобиан преобразования декартовых координат в цилиндрические. Все три интеграла по каждой из переменной не зависят друг от друга.

Вычислить интеграл $iiintlimits_U < left( < < x^2 >+ < y^2 >>
ight)dxdydz > ,$ где область (U) ограничена поверхностями ( < x^2 >+ < y^2 >= 3z,) (z = 3)

Решение:

Область интегрирования изображена на рисунке

Для вычисления интеграла перейдем к цилиндрическим координатам: $ < x =
ho cos varphi , >;; < y =
ho sin varphi , >;; < z = z. >$ Дифференциал при этом равен $dxdydz =
ho d
ho dvarphi dz;;left( <
ho — ext < якобиан >>
ight).$

Уравнение параболической поверхности принимает вид: $ <
ho ^2 > < cos ^2 >varphi + <
ho ^2 > < sin^2 >varphi = 3z;; ext < или >;; <
ho ^2 >= 3z.$ Проекция области интегрирования (U) на плоскость (Oxy) представляет собой окружность ( < x^2 >+ < y^2 >le 9) радиусом (
ho = 3).

Координата (
ho) изменяется в пределах от (0) до (3,) угол (varphi) от (0) до (2pi) и координата (z) от (largefrac < < <
ho ^2 >> > < 3 >
ormalsize) до (3.)

Читайте также:  Трейд ин отзывы покупателей

Используя цилиндрические координаты, найти значение интеграла $ I = intlimits_ < — 2 >^2 < dx >intlimits_ < — sqrt < 4 — < x^2 >> > ^ < sqrt < 4 — < x^2 >> > < dy >intlimits_0^ < 4 — < x^2 >- < y^2 >> < < y^2 >dz > $

Решение:

Область интегрирования (U) изображена на рисунке:

Ее проекция на плоскость (Oxy) представляет собой круг ( < x^2 >+ < y^2 >= < 2^2 >):

Новые переменные в цилиндрических координатах будут изменяться в пределах $ < 0 le
ho le 2, >;; < 0 le varphi le 2pi , >;; < 0 le z le 4 — <
ho ^2 >. > $

Вычислить интеграл, используя цилиндрические координаты: $iiintlimits_U < sqrt < < x^2 >+ < y^2 >> dxdydz > .$ Область (U) ограничена параболоидом (z = 4 — < x^2 >- < y^2 >,) цилиндром ( < x^2 >+ < y^2 >= 4) и плоскостями (y = 0,) (z = 0)

Решение:

Изобразив схематически область интегрирования (U,) находим, что ее проекция на плоскость (Oxy) < область (D) >представляет собой полукруг радиусом (
ho = 2).

Найти интеграл $iiintlimits_U < ydxdydz >,$ где область (U) ограничена плоскостями (z = x + 1,) (z = 0) и цилиндрическими поверхностями ( < x^2 >+ < y^2 >= 1,) ( < x^2 >+ < y^2 >= 4)

Решение:

Вычислим данный интеграл в цилиндрических координатах. Из условия $0 le z le x + 1$ следует, что $0 le z le
ho cos varphi + 1.$ Область интегрирования в плоскости (Oxy) представляет собой кольцо, ограниченное окружностями ( < x^2 >+ < y^2 >= 1) и ( < x^2 >+ < y^2 >= 4)

Следовательно, переменные (
ho) и (varphi) изменяются в интервале $1 le
ho le 2,;;0 le varphi le 2pi .$

Этот результат закономерен, поскольку область (U) симметрична относительно плоскости (Oxz,) а подынтегральная функция является четной.

Найти интеграл (iiintlimits_U < sqrt < < x^2 >+ < y^2 >+ < z^2 >> dxdydz > ,) где область интегрирования (U) шар, заданный уравнением ( < < x^2 >+ < y^2 >+ < z^2 >> = 25.)

Решение:

Поскольку область (U) представляет собой шар, и к тому же подынтегральное выражение является функцией, зависящей от $fleft( < < x^2 >+ < y^2 >+ < z^2 >>
ight),$ то перейдем к сферическим координатам.

Вычислить интеграл $iiintlimits_U < < e^ < < < left( < < x^2 >+ < y^2 >+ < z^2 >>
ight) > ^ < frac < 3 > < 2 >> > > > dxdydz > ,$ где область (U) представляет собой единичный шар ( < < x^2 >+ < y^2 >+ < z^2 >> le 1.)

Решение:

Центр данного шара расположен в начале координат. Следовательно, в сферических координатах область интегрирования (U) описывается неравенствами $ < 0 le
ho le 1, >;; < 0 le varphi le 2pi , >;; < 0 le heta le pi . >$

Как видно, тройной интеграл вырождается в произведение трех однократных интегралов, каждый из которых вычисляется независимо. В результате находим $ < I = intlimits_0^ < 2pi > < dvarphi >intlimits_0^1 < < e^ < <
ho ^3 >> > <
ho ^2 >d
ho > intlimits_0^pi < sin heta d heta >> = < left[ < left. varphi
ight|_0^ < 2pi >>
ight] cdot intlimits_0^1 < left( < < e^ < <
ho ^3 >> > cdot frac < 1 > < 3 >d <
ho ^3 >>
ight) > cdot left[ < left. < left( < — cos heta >
ight) >
ight|_0^pi >
ight] > = < 2pi cdot frac < 1 > < 3 >left[ < left. < left( < < e^ < <
ho ^3 >> > >
ight) >
ight|_ < <
ho ^3 >= 0 > ^ < <
ho ^3 >= 1 > >
ight] cdot left( < — cos pi + cos 0 >
ight) > = < frac < < 2pi >> < 3 >cdot left( < e — 1 >
ight) cdot 2 > = < frac < < 4pi >> < 3 >left( < e — 1 >
ight). > $

Вычислить интеграл (iiintlimits_U < xyzdxdydz >,) где область (U) представляет собой часть шара ( < x^2 >+ < y^2 >+ < z^2 >le < R^2 >,) расположенную в первом октанте (x ge 0, y ge 0, z ge 0.)

Решение:

Найти тройной интеграл $iiintlimits_U < left( < frac < < < x^2 >> > < < < a^2 >> > + frac < < < y^2 >> > < < < b^2 >> > + frac < < < z^2 >> > < < < c^2 >> > >
ight)dxdydz > ,$ где область (U) ограничена эллипсоидом $ < frac < < < x^2 >> > < < < a^2 >> > + frac < < < y^2 >> > < < < b^2 >> > + frac < < < z^2 >> > < < < c^2 >> > > = 1.$

Читайте также:  Что такое клиент групповой политики

Решение:

Для вычисления интеграла перейдем к обобщенным сферическим координатам путем следующей замены переменных: $ < x = a
ho cos varphi sin heta , >;; < y = b
ho sin varphi sin heta , >;; < z = c
ho cos heta . >$ Модуль якобиана данного преобразования равен (left| I
ight| = abc <
ho ^2 >sin heta .) Поэтому для дифференциалов справедливо соотношение $dxdydz = abc <
ho ^2 >sin heta d
ho dvarphi d heta .$ В новых координатах интеграл принимает вид: $ < I = iiintlimits_U < left( < frac < < < x^2 >> > < < < a^2 >> > + frac < < < y^2 >> > < < < b^2 >> > + frac < < < z^2 >> > < < < c^2 >> > >
ight)dxdydz > > = < iiintlimits_ < U’ >< left[ < frac < < < < left( < a
ho cos varphi sin heta >
ight) > ^2 > > > < < < a^2 >> > + frac < < < < left( < b
ho sin varphi sin heta >
ight) > ^2 > > > < < < b^2 >> > + frac < < < < left( < c
ho cos heta >
ight) > ^2 > > > < < < c^2 >> > >
ight]abc <
ho ^2 >sin heta d
ho dvarphi d heta > > = \ = < iiintlimits_ < U’ > < left[ < <
ho ^2 > < < cos >^2 > varphi , < < sin >^2 > heta + <
ho ^2 > < sin^2 >varphi , < < sin >^2 > heta + <
ho ^2 > < < cos >^2 > heta >
ight]abc <
ho ^2 >sin heta d
ho dvarphi d heta > > = \ = < iiintlimits_ < U’ > < left[ < <
ho ^2 > < < sin >^2 > heta underbrace < left( < < < cos >^2 > varphi + < sin^2 >varphi >
ight) > _1 + <
ho ^2 > < < cos >^2 > heta >
ight]abc <
ho ^2 >sin heta d
ho dvarphi d heta > > = \ = < iiintlimits_ < U’ > < <
ho ^2 >underbrace < left( < < sin^2 > heta + < < cos >^2 > heta >
ight) > _1abc <
ho ^2 >sin heta d
ho dvarphi d heta > > = < abciiintlimits_ < U’ > < <
ho ^4 >sin heta d
ho dvarphi d heta > . > $

Вычислить интеграл $intlimits_0^1 < dx >intlimits_0^ < sqrt < 1 — < x^2 >> > < dy >intlimits_0^ < sqrt < 1 — < x^2 >- < y^2 >> > < < < left( < < x^2 >+ < y^2 >+ < z^2 >>
ight) > ^2 > dz > ,$ используя сферические координаты.

Решение:

Область интегрирования представляет собой часть шара, расположенная в первом октанте и, следовательно, ограничена неравенствами $ < 0 le
ho le 1, >;; < 0 le varphi le frac < pi > < 2 >, > ;; < 0 le heta le frac < pi > < 2 >. > $

Далее:

Формулы. Равенство функций и эквивалентность формул. Основные эквивалентности

Вычисление криволинейного интеграла первого рода. Примеры

Определение тройного интеграла. Теорема существования тройного интеграла

Выражение площади плоской области через криволинейный интеграл

Частные случаи векторных полей

Скалярное поле, производная по направлению, градиент

Функции k-значной логики. Элементарные функции. Лемма об аналоге правила де Моргана

Вычисление криволинейного интеграла второго рода. Примеры.

Механические и физические приложения поверхностного интеграла первого рода

Вычисление площадей плоских областей

Линейный интеграл и циркуляция векторного поля

Решение задач с помощью алгебры высказываний

Вычисление криволинейного интеграла первого рода. Плоский случай

Поверхностный интеграл первого рода и его свойства

Огравление $Rightarrow $

Формулы вычисления тройного интеграла

Пусть областью интегрирования V является тело, ограниченное снизу поверхностью z=z1(х,у), сверху — поверхностью z=z2(х,у), причем z1(х,у) и z2(х,у) — непрерывные функции в замкнутой области D, являющейся проекцией тела на плоскость OXY. Тогда область V — правильная в направлении оси OZ.

В декартовых координатах

В цилиндрических координатах

В сферических координатах

где область V ограничена плоскостями х=0, у=0, z=1, х+у+z=2 .

Область V является правильной в направлении оси OZ.

Ее проекция D на плоскость OXY является правильной в направлении оси OY.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector