No Image

Является ли десятичная дробь рациональным числом

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Данная статья посвящена изучению темы "Рациональные числа". Ниже приведены определения рациональных чисел, даны примеры, рассказано о том, как определить, является ли число рациональным, или нет.

Рациональные числа. Определения

Прежде чем дать дефиницию рациональных чисел вспомним, какие еще есть множества чисел, и как они связаны между собой.

Натуральные числа, в совокупности с противоположными им и числом ноль образуют множество целых чисел. В свою очередь, совокупность целых дробных чисел образует множество рациональных чисел.

Определение 1. Рациональные числа

Рациональные числа — числа, которые можно представить в виде положительной обыкновенной дроби a b , отрицательной обыкновенной дроби — a b или числа ноль.

Таким образом, можно оставить ряд свойств рациональных чисел:

  1. Любое натуральное число является рациональным числом. Очевидно, каждое натуральное число n можно представить в виде дроби 1 n .
  2. Любое целое число, включая число 0 , является рациональным числом. Действительно, любое целое положительное и целое отрицательное число легко представляется в виде соответственно положительной или отрицательной обыкновенной дроби. Например, 15 = 15 1 , — 352 = — 352 1 .
  3. Любая положительная или отрицательная обыкновенная дробь a b является рациональным числом. Это следует напрямую из данного выше определения.
  4. Любое смешанное число является рациональным. Действительно, ведь смешанное число можно представить в виде обыкновенной неправильной дроби.
  5. Любую конечную или периодическую десятичную дробь можно представить в виде обыкновенной дроби. Поэтому, каждая периодическая или конечная десятичная дробь является рациональным числом.
  6. Бесконечные и непериодическое десятичные дроби не являются рациональными числами. Их невозможно представить в форме обыкновенных дробей.

Приведем примеры рациональных чисел. Числа 5 , 105 , 358 , 1100055 являются натуральными, положительными и целыми. Сдедовательно, это рациональные числа. Числа — 2 , — 358 , — 936 представляют собой целые отрицательные числа, и они также рациональны в соответствии с определением. Обыкновенные дроби 3 5 , 8 7 , — 35 8 также являются примерами рациональных чисел.

Приведенное выше определение рациональных чисел можно сформулировать более кратко. Еще раз ответим на вопрос, что такое рациональное число.

Определение 2. Рациональные числа

Рациональные числа — это такие числа, которые можно представить в виде дроби ± z n , где z — целое число, n — натуральное число.

Можно показать, что данное определение равносильно предыдущему определению рациональных чисел. Чтобы сделать это, вспомним, что черта дроби равносильна знаку деления. С учетом правил и свойств деления целых чисел, можно записать следующие справедливые неравенства:

0 n = 0 ÷ n = 0 ; — m n = ( — m ) ÷ n = — m n .

Таким образом, можно записать:

z n = z n , п р и z > 0 0 , п р и z = 0 — z n , п р и z 0

Собственно, данная запись и является доказательством. Приведем примеры рациональных чисел, основываясь на втором определении. Рассмотрим числа — 3 , 0 , 5 , — 7 55 , 0 , 0125 и — 1 3 5 . Все эти числа являются рациональными, так как их можно записать в виде дроби с целым числителем и натуральным знаменателем: — 3 1 , 0 1 , — 7 55 , 125 10000 , 8 5 .

Приведем еще одну эквивалентную форму определения рациональных чисел.

Определение 3. Рациональные числа

Рациональное число — это такое число, которое можно записать в виде конечной или бесконечной периодической десятичной дроби.

Данное определение напрямую следует из самого первого определения этого пункта.

Подведем итог и сформулируем резюме по данному пункту:

  1. Положительные и отрицательные дробные и целые числа составляют множество рациональных чисел.
  2. Каждое рациональное число можно представить в виде обыкновенной дроби, числитель которой является целым числом, а знаменатель — натуральным числом.
  3. Каждое рациональное число можно также представить в виде десятичной дроби: конечной или бесконечной периодической.

Какое из чисел является рациональным?

Как мы уже выяснили, любое натуральное число, целое число, правильная и неправильная обыкновенная дробь, периодическая и конечная десятичная дробь являются рациональными числами. Вооружившись этими знаниями можно без труда определить, является ли какое-то число рациональным.

Однако на практике часто приходится иметь дело не с числами, а с числовыми выражениями, которые содержат корни, степени и логарифмы. В некоторых случаях ответ на вопрос "рационально ли число?" является далеко не очевидным. Рассмотрим методы ответа на этот вопрос.

Читайте также:  Тег style внутри body

Если число задано в виде выражения, содержащего только рациональные числа и арифметические действия между ними, то результат выражения — рациональное число.

Например, значение выражения 2 · 3 1 8 — 0 , 25 0 , ( 3 ) является рациональным числом и равно 18 .

Таким образом, упрощение сложного числового выражения позволяет определить, рационально ли заданное им число.

Теперь разберемся со знаком корня.

Оказывается, что число m n , заданное в видя корня степени n от числа m рационально лишь тогда, когда m является n -ой степенью какого-то натурального числа.

Обратимся к примеру. Число 2 не является рациональным. Тогда как 9 , 81 — рациональные числа. 9 и 81 — полные квадраты чисел 3 и 9 соответственно. Числа 199 , 28 , 15 1 не являются рациональными числами, так как числа под знаком корня не являются полными квадратами каких-либо натуральных чисел.

Теперь возьмем более сложный случай. Является ли рациональным число 243 5 ? Если возвести 3 в пятую степень, получается 243 , поэтому исходное выражение можно переписать так: 243 5 = 3 5 5 = 3 . Следовательно, данное число рационально. Теперь возьмем число 121 5 . Это число нерационально, так как не существует натурального числа, возведение которого в пятую степень даст 121 .

Для того, чтобы узнать, является ли логарифм какого-то числа a по основанию b рациональным числом необходимо применить метод от противного. К примеру, узнаем, рационально ли число log 2 5 . Предположим, что данное число рационально. Если это так, то его можно записать в виде обыкновенной дроби log 2 5 = m n .По свойствам логарифма и свойствам степени справедливы следующие равенства:

5 = 2 log 2 5 = 2 m n 5 n = 2 m

Очевидно, последнее равенство невозможно так как в левой и правой частях находятся соответственно нечетное и четное числа. Следовательно, сделанное предположение неверно, и число log 2 5 не является рациональным числом.

Стоит отметить, что при определении рациональности и иррациональности чисел не стоит принимать скоропостижных решений. Например, результат произведения иррациональных чисел не всегда является иррациональным числом. Наглядный пример: 2 · 2 = 2 .

Также существуют иррациональные числа, возведение которых в иррациональную степень дает рациональное число. В степени вида 2 log 2 3 основание и показатель степени являются иррациональными числами. Однако само число является рациональным: 2 log 2 3 = 3 .

Какие числа рациональные? Рациональные числа (в отличии от иррациональных)– это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n, где числитель m — целые числа, а знаменатель n — натуральные числа, к примеру 2/3.

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

Поэтому число «Пи» (π = 3,14. ), основание натурального логарифма, e (e = 2,718..) или √2 НЕ являются рациональными числами.

Рациональные числа, примеры:

Множество рациональных чисел.

Множество рациональных чисел обозначают и его можно записать вот так:

Кроме того, одну дробь можно записать разными способами и видами, но значение ее не потеряется. Например, 3/4 и 9/12, (любая дробь, которую можно получить из другой дроби (и наоборот) умножая их либо деля числитель и знаменатель на одинаковое натуральное число, являются одним и тем же рациональным числом). Так как делением числителя и знаменателя дроби на НОД, можем получить единственное представление рационального числа, которое нельзя сократить, то можем говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

Множество рациональных чисел — это естественное обобщение множества целых чисел. Если у рационального числа a=m/n знаменатель n=1, то a=m будет целым числом.

Всякое рациональное число легко выразить как дробь, у которой числитель является целым числом, а знаменатель — натуральным числом.

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например, тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность. Для всяких рациональных чисел a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: « » либо «=». Это правило — правило упорядочения и формулируют его вот так:

Читайте также:  Чем чистить экран ноутбука в домашних условиях

2. Операция сложения. Для всех рациональных чисел a и b есть правило суммирования, которое ставит им в соответствие определенное рациональное число c. При этом само число c — это сумма чисел a и b и ее обозначают как (a+b), а процесс нахождения этого числа называют суммирование.

Правило суммирования выглядит так:

3. Операция умножения. Для всяких рациональных чисел a и b есть правило умножения, оно ставит им в соответствие определенное рациональное число c. Число c называют произведением чисел a и b и обозначают (a⋅b), а процесс нахождения этого числа называют умножение.

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a, b и c если a меньше b и b меньше c, то a меньше c, а если a равно b и b равно c, то a равно c.

5. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не изменяется.

6. Ассоциативность сложения. Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

7. Наличие нуля. Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

8. Наличие противоположных чисел. У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

9. Коммутативность умножения. От перемены мест рациональных множителей произведение не изменяется.

10. Ассоциативность умножения. Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

11. Наличие единицы. Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

12. Наличие обратных чисел. Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

13. Дистрибутивность умножения относительно сложения. Операция умножения связана со сложением при помощи распределительного закона:

14. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

15. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

16. Аксиома Архимеда. Каким бы ни было рациональное число a, легко взять столько единиц, что их сумма будет больше a.

Десятичной дробью называется дробь, у которой знаменатель представляет собой натуральную степень числа 10. Такой, например, является дробь Эту дробь можно записать в следующей форме: выписать в строку цифры числителя и отделить запятой справа столько из них, сколько нулей содержится в знаменателе, а именно:

В такой записи цифры, стоящие слева от запятой, образуют целую часть, а цифры, стоящие справа от запятой, — дробную часть данной десятичной дроби.

Пусть p/q — какое-либо положительное рациональное число. Из арифметики хорошо известен процесс деления, позволяющий представлять число в виде десятичной дроби. Сущность процесса деления состоит в том, что сначала находят, какое наибольшее целое число раз q содержится в p; если p — кратное q, то на этом процесс деления и заканчивается. В противном случае, появляется остаток. Далее находят, сколько в этом остатке содержится десятых долей q, и на этом шаге процесс может закончиться, либо появится новый остаток. В последнем случае находят, сколько в нем содержится сотых долей q, и т. д.

Если знаменатель q не имеет никаких других простых делителей, кроме 2 или 5, то через конечное число шагов остаток окажется равным нулю, процесс деления закончится и данная обыкновенная дробь обратится в конечную десятичную дробь. В самом деле, в указанном случае всегда можно подобрать такое целое число, что после умножения на него числителя и знаменателя данной дроби получится равная ей дробь, у которой знаменатель будет представлять натуральную степень десяти. Такой, например, является дробь

которую можно представить так:

Однако, не производя этих преобразований, разделив числитель на знаменатель, читатель получит тот же результат:

Если знаменатель несократимой дроби имеет по меньшей мере один простой делитель, отличный от 2 или 5, то процесс деления на q не закончится никогда (никакой из очередных остатков в нуль не обратится).

Читайте также:  Угарный газ от газовой плиты

Выполнив деление, найдем

Для записи результата, получаемого в этом примере, периодически повторяющиеся цифры 0 и 6 заключают в круглые скобки и пишут:

В этом примере и в других подобных случаях действие деления не приводит к окончательному результату в виде десятичной дроби. Можно, обобщая понятие десятичной дроби, все же говорить, что частное 965/132 представлено бесконечной периодической дробью Повторяющиеся цифры 06 называют периодом этой дроби, а их число, равное в нашем примере — длиной периода.

Чтобы уяснить причину явления периодичности дроби, разберем, например, процесс деления на 7. Если деление нацело не выполняется, то появляется остаток, который может иметь только одно из следующих значений: 1, 2, 3, 4, 5, 6. И на каждом из следующих шагов остаток будет иметь снова одно из этих шести значений. Поэтому не позднее чем на седьмом шаге мы неизбежно встретимся с одним из значений остатка, которые раньше уже появлялись, Начиная с этого места, процесс деления приобретет периодический характер. Периодически будут повторяться и значения остатков, и цифры частного. Такое рассуждение применимо и в случае любого другого делителя.

Таким образом, всякая обыкновенная дробь представляется конечной или бесконечной периодической десятичной дробью. Замечательно, что и, обратно, всякая периодическая десятичная дробь представима в виде обыкновенной дроби. Покажем, как выполняется это действие. При этом используется формула суммы бесконечно убывающей геометрической прогрессии (п. 92).

можно понимать так:

здесь члены правой части, начиная со второго, образуют бесконечную геометрическую прогрессию со знаменателем и первым членом

Пользуясь формулой (92.2):

Ясно, что этот же процесс позволит любую заданную бесконечную периодическую дробь представить в виде обыкновенной дроби (и, как можно показать, именно той, из которой в процессе деления в свою очередь получается данная бесконечная периодическая дробь). Впрочем, здесь имеется одно исключение. Рассмотрим дробь

и применим к ней процесс преобразования в обыкновенную дробь:

— мы пришли к числу 1/2, которое представляется конечной десятичной дробью

Сходный результат получится всякий раз, когда период данной бесконечной дроби имеет вид (9). Поэтому мы отождествляем такие пары чисел, как, например,

Иногда полезно еще допускать записи вида

представляя формально конечные десятичные дроби как бесконечные с периодом (0).

Все сказанное об обращении обыкновенной дроби в десятичную периодическую дробь и обратно относилось к положительным рациональным числам. В случае отрицательного числа можно поступить двояким образом.

1) Взять положительное число, противоположное данному отрицательному, обратить его в десятичную дробь, а затем поставить перед ней знак минус. Например, для — 5/3 получим

2) Данное отрицательное рациональное число представить в виде суммы его целой части (отрицательной) и его дробной части (неотрицательной), а затем обратить в десятичную дробь только эту дробную часть числа. Например:

Для записи чисел, представленных в виде суммы своей отрицательной целой части и конечной или бесконечной десятичной дроби, принято такое обозначение (искусственная форма записи отрицательного числа):

Здесь знак минус ставится не перед всей дробью, а над ее целой частью, чтобы подчеркнуть, что только целая часть отрицательна, а следующая за запятой дробная часть положительна.

Такая запись создает единообразие в записи положительных и отрицательных десятичных дробей и будет использована в будущем в теории десятичных логарифмов (п. 28). Предлагаем читателю для практики проверить переход от одной записи к другой в примерах:

Теперь уже можно сформулировать окончательный вывод: всякое рациональное число может быть представлено бесконечной десятичной периодической дробью, и, обратно, всякая такая дробь задает рациональное число. Конечная десятичная дробь допускает акже две формы записи в виде бесконечной десятичной дроби: с периодом (0) и с периодом (9).

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector